Symplectic Fibrations and the Abelian Vortex Equations
نویسنده
چکیده
The nth symmetric product of a Riemann surface carries a natural family of Kähler forms, arising from its interpretation as a moduli space of abelian vortices. We give a new proof of a formula of Manton–Nasir [10] for the cohomology classes of these forms. Further, we show how these ideas generalise to families of Riemann surfaces. These results help to clarify a conjecture of D. Salamon [13] on the relationship between Seiberg–Witten theory on 3–manifolds fibred over the circle and symplectic Floer homology.
منابع مشابه
A Problem List for Compact Hyperkähler Manifolds
In his thesis, Caldararu described twisted Fourier-Mukai transforms for elliptic fibrations. In this talk I will describe how certain holomorphic symplectic manifolds can be deformed to integrable systems, i.e. fibrations by abelian varieties. These are higher dimensional analogues of elliptic K3 surfaces, and twisted Fourier-Mukai transforms
متن کاملTwisted Fourier-Mukai transforms for holomorphic symplectic fourfolds
We apply the methods of Căldăraru to construct a twisted FourierMukai transform between a pair of holomorphic symplectic four-folds. More precisely, we obtain an equivalence between the derived category of coherent sheaves on a certain four-fold and the derived category of twisted sheaves on its ‘mirror’ partner. As corollaries, we show that the two spaces are connected by a one-parameter famil...
متن کاملPoisson Fibrations and Fibered Symplectic Groupoids
We show that Poisson fibrations integrate to a special kind of symplectic fibrations, called fibered symplectic groupoids.
متن کاملFukaya A∞-structures associated to Lefschetz fibrations. III
Floer cohomology groups are usually defined over a field of formal functions (a Novikov field). Under certain assumptions, one can equip them with connections, which means operations of differentiation with respect to the Novikov variable. This allows one to write differential equations for Floer cohomology classes. Here, we apply that idea to symplectic cohomology groups associated to Lefschet...
متن کاملA Special Class of Hyper-kähler Manifolds
We consider hyper-Kähler manifolds of complex dimension 4 which are fibrations. It is known that the fibers are abelian varieties and the base is P. We assume that the general fiber is isomorphic to a product of two elliptic curves. We prove that such a hyper-Kähler manifold is deformation equivalent to a Hilbert scheme of two points on a K3 surface. 1. Preliminaries First we define our main ob...
متن کامل